Криві другого порядку на площині

21. Границя функції.

Нехай функція визначена на деякій підмножині множини дійсних чисел , і – гранична точка множини . Нагадаємо, що у будь-якому –околі граничної точки міститься нескінченне число точок множини , проте сама точка може й не належати  .

Визначення 1. (Гейне). Число  називається границею функції при (або в точці ), якщо для довільної послідовності , збіжної до , відповідна послідовність значень функції збіжна до .

Якщо число– границя функції в точці , то пишуть або при .

Нехай функція має границю , тоді вона, очевидно, єдина. Це випливає з того, що збіжна послідовність може мати лише одну границю (див. гл.5,

1).

Визначення 2. (Коші). Число називається границею функції  при (або в точці ), якщо для будь-якого можна знайти таке число , що при всіх , які задовольняють нерівність

виконується нерівність

Визначення  границі функції в точці за Гейне і за Коші еквівалентні.

Відзначимо геометричний зміст визначення 2, скориставшись графіком функції (рис.40 ). Який би малий –окіл точки А не взяти, повинен існувати такий –окіл точки , що коли  змінюється між  і  , графік функції  знаходиться у смузі шириною  між прямими . Підкреслимо, що в точці  функція може набувати значення, яке не дорівнює А, або навіть бути невизначеною. Тому в визначенні 2 йдеться саме про нерівність

Змiст

Нові надходження

Всього підручників:

292